Controlling the crystallization of porous organic cages: molecular analogs of isoreticular frameworks using shape-specific directing solvents.

نویسندگان

  • Tom Hasell
  • Jamie L Culshaw
  • Samantha Y Chong
  • Marc Schmidtmann
  • Marc A Little
  • Kim E Jelfs
  • Edward O Pyzer-Knapp
  • Hilary Shepherd
  • Dave J Adams
  • Graeme M Day
  • Andrew I Cooper
چکیده

Small structural changes in organic molecules can have a large influence on solid-state crystal packing, and this often thwarts attempts to produce isostructural series of crystalline solids. For metal-organic frameworks and covalent organic frameworks, this has been addressed by using strong, directional intermolecular bonding to create families of isoreticular solids. Here, we show that an organic directing solvent, 1,4-dioxane, has a dominant effect on the lattice energy for a series of organic cage molecules. Inclusion of dioxane directs the crystal packing for these cages away from their lowest-energy polymorphs to form isostructural, 3-dimensional diamondoid pore channels. This is a unique function of the size, chemical function, and geometry of 1,4-dioxane, and hence, a noncovalent auxiliary interaction assumes the role of directional coordination bonding or covalent bonding in extended crystalline frameworks. For a new cage, CC13, a dual, interpenetrating pore structure is formed that doubles the gas uptake and the surface area in the resulting dioxane-directed crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages

The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies ado...

متن کامل

A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages

Porous organic cages present many opportunities in functional materials chemistry, but the synthetic challenges for these molecular solids are somewhat different from those faced in the areas of metal-organic frameworks, covalent-organic frameworks, or porous polymer networks. Here, we highlight the practical methods that we have developed for the design, synthesis, and characterization of imin...

متن کامل

Influence of amine group on the adsorptive removal of basic dyes from water using two nanoporous isoreticular Zn(II)-based metal organic frameworks

Dyes are the most abundant hazardous components existing in the environment because of their extensive use in industries. So, in the present study, two isoreticular Zn(II)-MOFs, TMU-16 and TMU-16-NH2, were used for the adsorptive removal of harmful cationic dyes from aquatic medium. In order ...

متن کامل

Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology

Porous coordination polymers are well known for their easily tailored framework structures and corresponding properties. Although systematic modulations of pore sizes of binary prototypes have gained great success, simultaneous adjustment of both pore size and shape of ternary prototypes remains unexplored, owing to the difficulty in controlling the self-assembly of multiple molecular building ...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 4  شماره 

صفحات  -

تاریخ انتشار 2014